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We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated
by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base
functions, viz. B=�ka

k�t�bk�r�. The properties of these biorthogonal function sets are treated in detail. We
consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent
convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients
ak is governed by a stochastic differential equation from which we infer their averages �ak�, autocorrelation
functions �ak�t�ak��t+���, and an equation for the cross correlations �aka���. The eigenfunctions of the dynamo
equation �with eigenvalues �k� turn out to be a preferred set in terms of which our results assume their simplest
form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency
and coherence time is given by I�k and −1 /R�k, respectively. The relative rms excitation level of the eigen-
modes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An
expression is derived for ��ak�2� / ��a0�2� in case the fundamental mode b0 has a dominant amplitude, and we
outline how this expression may be evaluated. It is estimated that ��ak�2� / ��a0�2��1 /N, where N is the number
of convective cells in the dynamo. We show that the old problem of a short correlation time �or first-order
smoothing approximation� has been partially eliminated. Finally we prove that for a simple statistically steady
dynamo with finite resistivity all eigenvalues obey R�k�0.
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I. INTRODUCTION

The origin of the magnetic field of the Earth and the Sun
is well understood at the qualitative level. Helical convection
acting on the toroidal component of the field generates new
poloidal field, while the toroidal field is regenerated either by
shear flows acting on the poloidal field or by the same helical
convection now acting on the poloidal field. These dynamo
processes are in principle able to balance resistive decay and
to maintain a magnetic field for very long times. The large-
scale magnetic fields observed in galactic disks are likewise
believed to be due to similar dynamo processes �1	. Self-
consistent hydromagnetic simulations that became available
since 1995 have confirmed this dynamo picture for the geo-
magnetic field �2	. Many groups have since then published
numerical geodynamo models. Even though the available
computational means do not permit the parameters of the
models to be “earth like,” the magnetic field of the simula-
tions has many properties in common with the observed geo-
magnetic field �2–6	. For the Sun with its much higher mag-
netic Reynolds number such simulations are not yet feasible.

The availability of numerical geodynamo models has
opened up the possibility for a detailed diagnostics of dy-
namo action. Kageyama and Sato �7	 and Olson et al. �8	
found that the regeneration of poloidal and toroidal field re-
sembles the �2-dynamo scenario of mean-field theory �9	.
Wicht and Olson �10	 analyzed the sequence of events lead-
ing to a reversal in a simple numerical dynamo model.
Schrinner et al. �11	 inferred mean-field tensors �ik and �ik�

and the mean field �B� from simulations. The mean field is
then compared with the mean field predicted by the dynamo

equation. Reasonable agreement was found for a simple
magnetoconvection model and for simple dynamo models.
For a recent review we refer to Wicht et al. �12	.

The evolution of the magnetic field B in the conducting
fluid of a dynamo is governed by the induction equation

�B

�t
= � � �V − ��� � B . �1�

The dynamo is located in a volume V with exterior vacuum
E �see Fig. 1�. The shape of the dynamo need not be spheri-
cal. The flow V consists of a stationary component v and the
turbulent convection u, which may have an arbitrary distri-
bution of spatial scales,
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FIG. 1. A dynamo in a volume V that need not be spherical, with
exterior vacuum E. The fluid in V has a magnetic resistivity �, and
the flow V consists of a stationary component v and the turbulent
convection u, which may have an arbitrary distribution over spatial
scales. The currents J are restricted to V, and both currents and
flows are tangential to the boundary �V. The magnetic field B is
continuous through �V.
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V = v + u . �2�

A popular line of attack is to average over the turbulent con-
vection u and to derive an equation for the mean field �B�
�the so-called mean-field dynamo equation or briefly dynamo
equation �9,13	�. We follow a different path, and we expand
the field B in a complete set of functions bi�r�. We then
determine the statistical properties of the expansion coeffi-
cients. The mean field �B� will appear only occasionally, as a
mathematical concept without much physical meaning at-
tached to it.

The idea to study dynamo-generated magnetic fields by an
expansion in multipoles goes back to Elsasser �14	. We fol-
low the same technique and obtain a set of equations for the
expansion or mode coefficients. These equations contain a
random element as the fluid motion V in the induction equa-
tion consists of a steady part with a superposed turbulent
convective component. The new aspect is that we use the
theory of stochastic differential equations �15	 to infer the
statistical properties of the mode coefficients. We consider a
statistically steady saturated dynamo with a self-consistent
mean flow u and turbulent flow v.

We treat a linear problem and consider u and v as given.
Until recently it had been tacitly assumed that the solution of
the induction �Eq. �1�	 represents the self-consistent field B
obtained from a nonlinear solution of the magnetohydrody-
namic �MHD� equations �provided one uses the exact self-
consistent flow u+v�. But we now know that this is not
correct. There are statistically steady saturated dynamos
whose velocity field, taken as a given input flow in the in-
duction equation, acts as a kinematic dynamo with exponen-
tially growing solutions �16,17	. In those cases the induction
equation on its own is obviously unable to reproduce the
self-consistent field B. Many questions regarding this unex-
pected phenomenon remain to be answered. For example, it
is not known to what extent it is a universal feature. Schrin-
ner and co-workers �to be submitted� found several counter-
examples, and their results suggest that the flow fields of fast
rotating geodynamo models are also kinematically stable.
The solution of the induction equation with the �self-
consistent� flow taken from these dynamos is �after a transi-
tory period� up to a constant factor equal to the self-
consistent field B, independent of the initial condition. In the
absence of a generally agreed-upon terminology we shall in
this paper refer to these dynamos as kinematically stable dy-
namos.

Here we restrict ourselves to kinematically stable dyna-
mos so that the solution of Eq. �1� faithfully represents the
actual field B. Otherwise, the dynamo model is general and
may be of the geodynamo or solar type. We take the exis-
tence of a linear dynamo instability and its nonlinear satura-
tion for granted, and study the fluctuations of the system
around this nonlinear equilibrium state driven by the turbu-
lent convection. A proviso must be made for galactic dyna-
mos since these may not yet be in a statistically steady satu-
rated state. It is therefore not clear if the theory developed
here is applicable to these dynamos.

In this study we do not focus on the mean-field concept
�B�; we rather expand the field B in a complete set of func-

tions bi�r�. But as we determine the statistical properties of
the expansion coefficients, notions from mean-field theory
pop up simply because we compute averages. For example,
the dynamo parameters � and �, well known from mean-
field theory, emerge because they are connected to the sim-
plest nontrivial averages of the turbulent convection. It is
almost unavoidable that they should appear in any theory
that considers averages over the turbulent convection. In
other words, as we compute the statistical properties of the
expansion coefficients we make contact with mean-field
theory, but we do not use the mean-field concept �B�, except
occasionally in passing.

The context of this study is as follows. Hoyng et al. �18	
analyzed the statistical properties of the multipole coeffi-
cients of the mean field of a simple mean-field geodynamo
model excited by fluctuations in the dynamo parameter �.
Here we address a much more general problem: the statisti-
cal properties of the multipole coefficients of the field itself
due to forcing by the turbulent convection. The present paper
builds on an earlier study of Hoyng �19	 that addressed the
same problems, but with limited success. The question of the
rms mode excitation level was only solved conceptually, and
the derivation of the time evolution of the mean expansion
coefficients contained errors. Moreover, the study was re-
stricted to dynamos with homogeneous isotropic turbulence.
These points of criticism have been removed here. Since we
study the relative excitation level of magnetic overtones in
the dynamo, the present work may also be regarded as a
spectral theory �20	 yielding the distribution of magnetic en-
ergy in a finite dynamo as a function of spatial scale �i.e.,
mode number�, with due allowance for the boundary condi-
tions.

This paper is organized as follows. In Sec. II we summa-
rize the properties of the function sets we use to represent the
magnetic field of the dynamo, in particular biorthogonality
and closure relations. Then we derive the equation for the
mode expansion coefficients in Sec. III. Next we determine
the statistical properties of the expansion coefficients. In Sec.
V we derive the time evolution of the mean mode coeffi-
cients and show that it is governed by the operator of the
dynamo equation. In Secs. VI and VII we compute the exci-
tation level of the overtones relative to the fundamental �di-
pole� mode. Finally, in Sec. VIII we discuss our results and
potential applications in a somewhat wider perspective.

II. COMPLETE FUNCTION SETS

We summarize here some technicalities concerning the
function sets that we employ. Some of these properties have
been derived elsewhere �19,21	, and we collect them here in
the interest of a homogeneous notation, taking the opportu-
nity to correct some mistakes. Readers may move directly to
Sec. III and return here for reference.

We expand the field B of the dynamo, see Fig. 1, in a
complete set of functions b j�r�,

B = �
j

aj�t�b j�r� . �3�

These functions are often eigenfunctions of some differential
operator, and since this operator is usually not self-adjoint
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the functions are not orthogonal. This problem is handled by

using the adjoint set b̂i�r�, with the following property:



V+E

b̂i · b jd3r = 	ij . �4�

The base functions b̂i�r� and b j�r� constitute a biorthonormal
set �19,22	; they are continuous through the boundary �V of
V, just like B, and potential in E. A few remarks on the
notation:

�i� the hat includes complex conjugation, so

B̂ = �
i

ai��t�b̂i�r� ,

�ii� upper indices enumerate the base functions,
�iii� lower indices indicate vector components,
�iv� currents are defined as J=��B—the factor 4
 /c is

absorbed in J.
Examples of such function sets are the free decay modes,

or the eigenfunctions of a homogeneous spherical dynamo
�see Ref. �9	, Chap. 14�. These two sets are actually self-
adjoint so that the adjoint sets are obtained by complex con-

jugation: b̂i�r�=bi��r�. Usually the situation is more compli-
cated, and we refer to Schrinner et al. �23	 for the
construction of the adjoint set of the eigenfunctions of the
dynamo equation. From that construction a number of prop-

erties emerge, such as ĵ�adjoint of ��b��� b̂, i.e., the
adjoint operation commutes with �.

A. Biorthogonal sets in V

It is of course possible to define an inner product in V

alone, and to construct an adjoint set �b̂i of �b̂ j so that these

are biorthogonal in V: �Vb̂i ·b jd3r=	ij. But as we shall see
these sets are not very convenient. Fortunately, the boundary
conditions permit construction of a very useful biorthogonal

set in V, starting from sets �b̂i and �b j that are biorthogonal
in V+E. For two fields b1 and b2 with associated currents j
=��b and vector potentials a, where ��a=b, we have

� · b̂1�a2= ĵ1 ·a2− b̂1 ·b2, whence



V+E

b̂1 · b2d3r = 

V

ĵ1 · a2d3r − ��
�E

+ �
�V
�b̂1 � a2 · d2� .

�5�

Here �V and �E indicate the boundary of V and E, respec-
tively. The surface integrals cancel because the field is con-
tinuous through �V and the vector potential can be con-
structed to be so. Volume integrals containing currents may
be restricted to V since j=0 in E. This leads to



V+E

b̂i · b jd3r = 

V

ĵi · a jd3r = 

V

âi · j jd3r = 	ij . �6�

These relations are invariant under a gauge transformation

a→a+�� because �V ĵ ·��d3r=�V� · ��ĵ�d3r=��V�ĵ ·d2�
=0, as �adjoint� currents run parallel to the boundary. Cur-
rents and vector potentials thus form a biorthogonal set in V,
and this is essential for our study.

B. Closure relations

Completeness means that any reasonable field B should
have a unique expansion �Eq. �3�	. Completeness implies the
existence of closure relations. The best known example is
from quantum mechanics where orthonormality of two
eigenstates m and n means that ��m�r���n�r�d3r=	mn, and
the closure relation is �n�n�r���n�r��=	�r−r��, provided the
sum is over a complete set of eigenstates �24	. In the present
context it can be shown that

�
i

b̂k2
i b�1

i = �
i

ĵk2
i a�1

i = �
i

âk2
i j�1

i = 	�1 − 2�	k�. �7�

Notation: 1=r1, 2=r2, b�1
i =�th vector component of bi�r1�,

etc. Relation �7� says that the expressions on the left are unit
operators in the discrete and continuous indices. There are
several other closure relations, and the one we actually need
is

�
i

ĵk2
i b�1

i = �k�m	�1 − 2��m2. �8�

Relations �7� and �8� hold under an integral sign �Vd2¯ and
are to be regarded as operators acting on all r2 dependence in
the integrand. Care is needed when applying these closure
relations, and for details we refer the reader to Appendix C of
Ref. �21	. Recall that we have absorbed the factor 4
 /c in
the definition of the current.

III. MODE EQUATIONS

On taking the inner product of Eq. �3� with b̂k we obtain
with the help of Eq. �4�,

ak�t� = 

V+E

b̂k · Bd3r . �9�

To obtain the evolution equation of ak, we take the time

derivative ˙=�t and split the integral in two parts,

ȧk�t� = 

V

b̂k · Ḃd3r + 

E

b̂k · Ḃd3r . �10�

In the first term we may use the induction equation, but we
have no equation for �tB in E, where B is simply the poten-
tial field continuation of B on �V. Omitting the second term
is no option as it amounts to saying that �tB=0 in E. A way
out of this dilemma is to integrate the right-hand side of Eq.
�9� by parts, as in Eq. �5�, to obtain ���A=B�:

ak�t� = 

V

ĵk · Ad3r . �11�

Derivation of the mode equations is now straightforward.
Take the time derivative of Eq. �11� and insert the uncurled
induction equation, �tA= ��v+u�−���B+��, to obtain

ȧk�t� = 

V

ĵk · ��v + u� − �� � Bd3r . �12�

The gradient term produces zero �see below Eq. �6�	. At this
point we note that if we had used a biorthogonal set bi�r�,
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b̂ j�r� in V, the dilemma mentioned a moment ago would not
occur because the integrals are restricted to V. However Eq.
�12� would then read

ȧk�t� = 

V

b̂k · � � ��v + u� − �� � Bd3r . �13�

There is no conflict between Eqs. �12� and �13� because they
use different bases: biorthogonal in V+E and biorthogonal in

V, respectively. So b̂k, ĵk in Eq. �12� are not the same as b̂k,

ĵk in Eq. �13�.
The extra � on the right-hand side of Eq. �13� is very

inconvenient and cannot be removed by integration by parts
because the surface integral over �V is nonzero �see Appen-
dix A�. It would stay with us and cause havoc in all subse-
quent analytical and numerical work. Therefore Eq. �12� is
much to be preferred. This point was one of the main drivers
for developing the formalism of Sec. II. Because of its im-
portance, we discuss the issue in more detail in Appendix A.

On inserting B=��a�b� in Eq. �12�, we arrive at the mode
equations

ȧk = �
�

�Sk� + Ck��t�a�, �14�

with

Sk� = 

V

ĵk · �v − ��� � b�d3r; �15�

Ck��t� = 

V

ĵk · u � b�d3r = − 

V

u · ĵk � b�d3r . �16�

The base functions that occur in the definition of the matrix
elements Sk� and Ck� may be thought of as spatial filters with
positive and negative signs indicating how the velocities v
and u are to be weighted in the volume integration over V.
The boundary conditions make that the integrals are of the
type �current�operator�field� rather than �field�operator�field�.
The boundary conditions have therefore a profound effect on
the definition of these filters. Mode equations of type �14�
had already been derived by Elsasser �14	, although he con-
sidered steady flows only. Compared to the time scales in the
steady matrix, the elements Ck� fluctuate rapidly because
u�r , t� does. The mode equations are therefore stochastic
equations, and we shall use the theory of these equations to
infer averages of the mode coefficients.

IV. STOCHASTIC EQUATIONS WITH MULTIPLICATIVE
NOISE

Consider a linear equation of the type

�x

�t
= �A + F�t�x , �17�

where linear means linear in x. The quantity x may be any-
thing: a scalar, a vector such as B, or other. The operator A is
independent of time but F�t� fluctuates randomly, with a cor-
relation time �c and zero mean, �F�=0. This “noise term”

F�t� is said to be multiplicative as it multiplies the indepen-
dent variable x, and that makes Eq. �17� more complicated
than for example �x /�t=Ax+F�t�, where the noise term is
additive.

A tenet of the theory of stochastic differential equations is
that the average �x� obeys a closed equation �15	

�

�t
�x� = �A + 


0



d��F�t�exp�A�� · F�t − ���exp�− A����x� .

�18�

The right-hand side of Eq. �18� is actually the first term of a
series with terms of order �F�c�n containing higher-than-
second-order correlation functions �25	. Here F stands for
Frms. We assume that the correlation time is small, F�c�1,
so that only the first term survives and only second-order
correlations matter, as in Eq. �18�. Frequently also A�c�1
holds, and then we may ignore the exponential operators in
Eq. �18�. These evolution operators exp��A��, incidentally,
ensure that the transport coefficients for �x� derived from Eq.
�18� are Galilean invariant �26	. Relation �18� will be applied
several times in what follows.

V. AVERAGE MODE COEFFICIENTS

The equation for the average �ak� is in principle available
in the literature, but hidden in two papers �19,21	. We sum-
marize the derivation here, and apply Eq. �18� to Eq. �14�,

d

dt
�ak� = �Sk� + 


0



d��Cki�t�Ci��t − �����a�� . �19�

Summation over double upper indices �here i and �� is im-
plied. Before we elaborate the correlation function we verify
the conditions to be satisfied:

�1� Ck��c�1, the usual condition of a short correlation
time, now in the context of the present application �Ck� is
understood to indicate a characteristic magnitude�. We esti-
mate the value of Ck��c for the geodynamo. The volume
integration in Eq. �16� reduces u effectively to urmsN

−1/2,
where N�4R3 /�c

3� number of convection cells; R is the
radius of the outer core and �c is the correlation length �the

volume of the inner core is negligible�. We estimate ĵk=�

� b̂k� b̂k / �R /k� and �Vb̂kb�d3r=O�1�, and urms�c��c. This
leads to

Ck��c � urms�c�4R3

�c
3 �−1/2


V

b̂kb�

R/k
d3r �

k

2
��c

R
�5/2

. �20�

For the geodynamo we have R /�c�3.5. It follows that
Ck��c�0.02k so that Ck��c�1 seems well satisfied for the
lowest multipole coefficients ak �even though urms�c��c�.
There is an interesting connection here with the problem of
the first-order smoothing approximation �FOSA� in mean-
field theory, and we refer to Sec. VIII where we illustrate
how this FOSA problem seems to be partially eliminated.

�2� Sk��c�1. The magnitude of Sk� is set by the resistive
term in Eq. �15�, and in much the same way we obtain
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Sk��c � k���c/R2. �21�

For the geodynamo we have ��1 m2 s−1 and Sk��c�3
�10−4k� so that Sk��c�1 holds except for high-order
modes. We have to assume therefore that these modes con-
tribute little, which is plausible because they will have small
amplitudes.

The correlation function in Eq. �19� is evaluated in Ap-
pendix B, and as a result we may write Eq. �19� as follows:

d

dt
�ak� = Dk��a�� , �22�

with

Dk� = 

V

ĵk · Db�d3r , �23�

where the operator D is defined as

Db = v � b + � · b − �:��b� − � � � b . �24�

Notation: �� ·b�i=�ikbk and �� : ��b�	i=�ik���kb��. The op-
erator D is intimately related to the dynamo equation, which
reads �Appendix B�

�

�t
�B� = � � D�B� . �25�

The fact that the operator of the dynamo equation for the
mean field emerges in Eq. �22� is quite independent of which
set of base functions is used. At this point we see how mean-
field theory emerges as we study the statistical properties of
the mean-mode coefficients. It happens because we take av-
erages, and since the simplest averages over the turbulent
convection involve v, �, and �, it is perhaps not surprising
that the operator of the dynamo equation for the mean field
appears. But we use the mean field �B� as a mathematical
concept only, without much of a physical meaning attached
to it.

A. Dynamo action and dynamo equation

The fact that the dynamo equation for the mean emerges
as we set up the theory indicates a deep connection between
dynamo action in flows with a random element and the
mean-field dynamo equation. This relation can be elucidated
by adopting the eigenfunctions of the dynamo equation as
the complete function set �bi, with eigenvalues �i �27	. Then
we have

� � Dbi = �ib
i. �26�

Relations �26� through �29� below hold only if we use the
eigenfunctions of the dynamo equation as our function set.
Schrinner et al. �23	 show how these eigenfunctions and
their adjoints may be constructed.

The computation of Dk� from Eq. �23� has several poten-

tial pitfalls. Integration by parts to �Vb̂k ·��Db�d3r, with
hopes of using Eq. �26�, is not possible because the surface

term ��Vb̂k�Db� ·d2� does not vanish. Neither does it help

to argue that Eq. �23� =�V+Eĵk ·Db�d3r=�V+Eb̂k ·��Db�d3r,

because D is not defined in E. A safe way is to uncurl Eq.
�26� to Dbi=�ia

i+��, and to insert that in Eq. �23� as fol-
lows:

Dk� = ��

V

ĵk · a�d3r = ��	k�. �27�

The gradient term produces zero, see below Eq. �6�. The
detour via the vector potential in Eq. �27� allows us to avoid
trouble due to the discontinuity of the operator D on �V.

Returning to the evolution of the mean mode coefficients,
we now have

d

dt
�ak� = �k�ak�, or �ak� � exp��kt� . �28�

If we choose the eigenfunctions of the dynamo equation �the
operator ��D� as a basis to represent the magnetic field,
then the mean-mode coefficients decay as simple exponen-
tials at a rate set by the eigenvalue of the mode. Represen-
tation of the field B of the dynamo in terms of the eigenfunc-
tions of its dynamo equations is therefore an efficient way to
expose the underlying physics. The autocorrelation of the
expansion coefficients becomes

�ak�t + ��ak��t�� = ��ak�2� · exp��k�� �29�

�no summation over k�. The proof is simple and not given
here. The mean squares of the expansion coefficients are
computed in Sec. VII, relation �40�.

Of course one may always use a different representation.
In that case Dk� is no longer diagonal and the mean-mode
coefficients have a more complicated time dependence.
Equation �22� may be integrated to

�ak��t = �exp�Dt�	k��a���t=0. �30�

The time dependence of �ak� �t and the autocorrelation func-
tion is now a mixture of exponentials.

B. Absence of growing modes

For the theory developed here to make sense it is neces-
sary that all eigenvalues have a negative real part, R�k�0,
and we shall assume that this is the case. The implication is
that if we measure the flow in a dynamo �model� with all
feedbacks of the Lorentz force acting on it, we should find,
on solving Eq. �26� with �ij and �ijk and mean flow com-
puted from these measurements, that all eigenvalues have
R�k�0. This is one of the checks on a correct determination
of the dynamo coefficients. Of course this can only be true if
we restrict ourselves to kinematically stable dynamos �see
Sec. I for a definition�. A proof that R�k�0 has been given
for a few special cases with infinite conductivity �28,29	, but
a general proof is lacking. In Appendix C we push the issue
one step forward and prove that all eigenvalues of the dy-
namo equation of a statistically steady dynamo with locally
isotropic turbulence and finite conductivity have negative
real parts.

A consequence is that all mean-mode coefficients ap-
proach zero, �ak�↓0, and that the mean field �B�=�i�ai�bi

will also be zero,
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�B� = 0. �31�

Ultimately, this may be seen as a consequence of the fact that
both B and −B are solutions of the MHD equations for given
V and since there is always a �possibly very small� transition
probability between the two states, a full ensemble average
�B� of a statistically steady dynamo will be zero. This is also
true if �·� is a time average, provided the average is over a
sufficiently long time, so that all dynamical states of the
system are sampled. For the geodynamo that would mean an
average over a time interval containing a large number of
reversals �or cycle periods in case of the solar dynamo�.

From a practical point of view, it is therefore not obvious
what a time- or an ensemble-averaged field �B� is telling us
about the actual field B of a dynamo, and this is one of the
main motivations for the approach presented in this paper. A
similar objection may be held against the mean-mode coef-
ficients �ak�. They also do not contain much information
since they are zero �after some time�, but they are indispens-
able for setting up the theory. The cross-correlation coeffi-
cients �aka�� that we compute in Sec. VI are much more
useful in this regard.

C. Mode excitation and phase mixing

The interpretation of these results is the following �26	.
The eigenmodes of the dynamo equation serve as a kind of

normal modes of the dynamo. These normal modes are tran-
siently excited and have a frequency I�k. The relative rms
mode amplitudes will be computed in Sec. VI. Random
phase shifts due to the stochastic forcing render the modes
quasiperiodic with a coherence time −1 /R�k. Due to the
averaging, these phase shifts appear as a damping of the
mean-mode amplitude �ak�. This is a familiar phenomenon in
statistical physics known as phase mixing.

VI. MEAN-SQUARE MODE COEFFICIENTS

In this section we are interested in the cross-correlation
coefficients �aka���. The strategy is to derive an equation of
the type �d /dt��aka��=operator· �aiaj�. We may then apply
relation �18� to find the equation for �aka��� �see Ref. �15	�.
The analysis is straightforward �we use ˙=d /dt�,

�aka���˙ = ȧka�� + akȧ�� = �Ski + Cki�aia�� + ak�S�j� + C�j��aj�

= �Ski��j + S�j��ki

A

+ Cki��j + C�j��ki

F�t�

�aiaj�.

�32�

This is of the form �17� with x= �aka��. The conditions of a
short correlation time F�c�1 and A�c�1 are the same as
Eqs. �20� and �21�, respectively. The application of recipe
�18� for the average is mainly a matter of bookkeeping of
upper indices,

d

dt
�aka��� = �Skm	�n + S�n�	km + 


0



d���Cki�t�	�j + C�j��t�	ki� · �Cim�t − ��	 jn + Cjn��t − ��	im����aman��

= �Skm	�n + S�n�	km + 

0



d���C�t� · C�t − ���km	�n + �C�t� · C�t − ����n�	km�

+ 

0



d���Ckm�t�C�n��t − ��� + �C�n��t�Ckm�t − ������aman��

= �Dkm	�n + D�n�	km + 

0



d���Ckm�t�C�n��t − ��� + �C�n��t�Ckm�t − ������aman�� . �33�

We see that the dynamo operator D also plays a role in the
evolution of the mean-square mode coefficients. Relation
�33� becomes more transparent if we adopt the eigenfunc-
tions of ��D as our basis,

� d

dt
− �k − ��

���aka��� = �Mkm�n + M�nkm���aman�� . �34�

�summation over n, m, not over k, ��. The matrix Mkm�n is
defined as

Mkm�n = 

0



d��Ckm�t�C�n��t − ��� . �35�

A. Interpretation of Eq. (34)

Equation �34� describes the time evolution of the mean-
square mode coefficients �aka���. We replace d /dt by �, as
usual, to obtain the eigenvalue problem �the double indices k,
� and m, n may each be grouped into a single new index�. Of
interest is the largest eigenvalue �, which should be approxi-
mately zero, otherwise �aka��� would either grow indefi-
nitely, or become zero. This is again a matter of using the
correct values of the dynamo coefficients. For instance, in a
statistically steady geodynamo simulation the magnetic en-
ergy is on average constant, which implies that the mean-
square mode coefficients �aka��� are constant, even though
some of the modes may be quasiperiodic. A determination of
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the dynamo coefficients �ij and �ijk from a measurement of
velocity correlation functions in this dynamo must then re-
sult in Eq. �34� having a stationary solution. This solution is
the eigenvector belonging to the eigenvalue �=0 and it
specifies the relative magnitudes of the correlation coeffi-
cients �aka��� �the absolute level is out of reach and requires
explicit inclusion of nonlinear effects�. These contain a lot of
information, such as the distribution of magnetic energy over
spatial scales. All other eigenvalues � should have negative
real parts, and correspond to transient initial states.

B. Computation of Mkm�n

Expression �35� for Mkm�n looks very similar to the cor-
relation function in Eq. �19�, but there is an important differ-
ence: there is no internal summation over modes. The closure
relation is therefore no longer a comrade in arms, which
renders evaluation of Eq. �35� much less straightforward. We
insert Eq. �16� in Eq. �35�,

Mkm�n = 

0



d��Ckm�t�C�n��t − ���

=
 

V

d1d2�ĵk � bm�p1�ĵ� � bn�q2
� · 


0



d��up1
t uq2

t−�� .

�36�

Here 1=r1, 2=r2, index p1 indicates pth vector component
at position r1, up1

t = pth vector component of u at position r1
and time t, etc. Summation over the vector indices p, q is
implied.

There is an opportunity to simplify relation �36� if the
correlation length �c of the flow u is much smaller than the
size of the dynamo—in other words, if there is a separation
of spatial scales. In that case we put r2=r1+� and note that

�up1
t uq2

t−�� is zero if ���c. Since ĵk�bm and ĵ��bn are both
of much larger spatial scale �� size dynamo�, they are, from
their point of view, either evaluated at virtually the same
location or the correlation function is zero. It follows that

Mkm�n � 

V

d3r�ĵk � bm�p�ĵ� � bn�q
��pq�r� , �37�

where the tensor �pq is given by

�pq�r� = 

V

d3�

0



d��up�r,t�uq�r + �,t − ��� . �38�

The integration over � extends over a small radius ���c�
size dynamo, centered on r. Relations �37� and �38� are use-
ful starting points for model dynamos with small scale tur-
bulence, and we refer to Appendix C for an application. But
often, for example in numerical geodynamo models, there is
no separation of spatial scales. The theory developed here
remains valid, but the only option for computing Mkm�n

seems to be through measurements of the turbulent flow u.
These permit computation of time series Ckm�t� from defini-
tion �16�, after which Mkm�n may be found as an integral over
the cross-correlation function �Ckm�t�C�n��t−���.

VII. MEAN OVERTONE EXCITATION LEVEL

The idea of determining mean-square mode coefficients
�aka��� of a statistically steady dynamo by solving the eigen-
value problem corresponding to Eq. �34� may be conceptu-
ally helpful, but in practice it leads to an extremely compli-
cated problem because there are so many indices: each single
index in Eq. �34� actually comprises three other indices cor-
responding to the three spatial degrees of freedom. Approxi-
mation methods seem to be the only way out. For example, if
the geodynamo has a dominant dipole mode we may hope
that the sums on the right-hand side of Eq. �34� are domi-
nated by the term m=n=0. Assuming a statistically steady
state we then arrive at

�aka��� � −
Mk0�0 + M�0k0�

�k + ��
� ��a0�2� . �39�

This relation gives the magnitude of the cross correlation
�aka��� relative to the mean-square amplitude of the funda-
mental mode. The mean-square overtone amplitude is

��ak�2� �
Mk0k0

− R�k
��a0�2� . �40�

Since Mk0k0=�0
d��Ck0�t�Ck0��t−�����Ck0�rms

2 �c

= ��Vu · ĵkb0d3r�rms
2 �c we obtain

��ak�2�
��a0�2�

�
− 1

R�k
�


V

u · ĵk � b0d3r�
rms

2

�c. �41�

The physical picture behind Eq. �41� is as follows �see Fig.
2�. The turbulent convection u creates new small scale fields
�overtones� by continuously deforming the dominant funda-
mental mode. This is encoded in the numerator of Eq. �41�.
These overtones are subsequently damped by resistive ef-
fects �R�k in the denominator�. The balance of the two pro-
cesses determines the excitation level. Excitation of overtone

k is effective at locations where ĵk�b0 is large, in particular
when the turbulent flow u is parallel to it. Hoyng and Van
Geffen �30	 derived a relation similar to Eq. �41� for a simple
dynamo, and these authors found that it agrees accurately
with numerical results.

Further progress requires evaluation of Eq. �41� or of
Mk0k0, for which there are basically two options. For a model
dynamo it may be done analytically. Otherwise we need to
measure the flow u and compute Eq. �41� as an integral over
the correlation function of Ck0�t�.

Here we shall restrict ourselves to an estimate of the order
of magnitude of Eq. �41� for a spherical dynamo with radius

b0

action

of u

equi-

valent to
plus

b0 + bi

resistive damping

FIG. 2. Intuitive picture of excitation of overtones in case of a
dominant fundamental mode.
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R. The volume integration in Eq. �41� may be estimated as in
Eq. �20�, except that we now do not eliminate the number of
convective cells N,

Ck0 � 

V

u · ĵk � b0d3r � urmsN
−1/2�R/k�−1, �42�

so that ��¯�rms
2 �c�urms

2 �cN
−1�k /R�2��� /R2�N−1k2, where �

is the turbulent diffusion coefficient. Due to the resistive
term in Eq. �15�, R�k scales approximately as k2 so that
k2 / �−R�k��constant�R2 /�. Hence we predict that to order
of magnitude

��ak�2�
��a0�2�

�
�

R2

1

N

k2

− R�k
�

1

N
for k �

R

�c
. �43�

The meaning of k above and in Eqs. �20� and �21� is not
immediately clear as it comprises three quantum numbers n
�radial� and �, m for the two angular coordinates. Since k
appears when R /k is taken to be the spatial scale of bk, one
should assign k=1 to the fundamental mode. For overtones
one may think of k as a geometrical mean, k= �n�m�1/3, but
an exact interpretation is of course not possible.

The implication for the geodynamo is that the rms mode
amplitude relative to the fundamental mode would be of the
order of N−1/2�0.1, approximately independent of mode
number. This does not seem to be an outrageous number, but
it cannot be readily compared with the data �31	 because
these do not distinguish between modes of different radial
order.

Estimate �43� assumes effectively that k�R /�c, i.e., that
R /k, the spatial scale of mode bk, is much larger than the
correlation length �c. For high-order overtones with k
�R /�c �spatial scale of mode bk smaller than �c� we obtain

��ak�2�
��a0�2�

�
1

N
� R

k�c
�3

for k �
R

�c
. �44�

For very high-order modes the excitation level approaches
zero.

VIII. DISCUSSION

We have analyzed the statistical properties of the mag-
netic field generated by a turbulent dynamo in a nonlinearly
saturated state. The properties of the mean and convective
flow in this saturated state are supposed to be given, which
allows us to use linear theory. Starting from an expansion in
a set of base functions, we have derived statistical properties
of the expansion coefficients ak�t�, viz. the means �ak�, the
cross correlations �aka���, and the autocorrelation functions
�ak�t�ak��t+���. The convection may have any spatial scale
distribution. Conditions for validity are �1� a short correla-
tion time, Ck��c�1, and �2� the effect of the mean flow v in
one correlation time is small, Sk��c�1. The second assump-
tion is made for convenience, and the theory can still be
deployed if it does not hold. These two conditions have been
worked out for the geodynamo in Eqs. �20� and �21�, and
seem to be well satisfied for the lower multipole coefficients
ak. The two main tools enabling our analysis are �1� the fact

that currents and vector potentials form a biorthogonal set in
the volume V of the dynamo, and �2� the theory of stochastic
differential equations.

Any set of magnetic fields bk�r� may be used for the ex-
pansion. However, since the theoretical results contain aver-
ages over the turbulence that also occur in mean-field theory,
it turns out that the eigenfunctions of the dynamo equation
are a preferred set, in terms of which our results assume their
simplest form. This is an important point, and the reader
might easily get the wrong impression, as we pay quite some
attention to the dynamo coefficients �ij and �ijk and to eigen-
functions and eigenvalues of the dynamo equation. But this
is only done in the interest of determining the preferred basis
and its properties, not because we want to focus our study on
the mean-field concept �B�.

A. Nature of the dynamo field

The physical picture that emerges from our study is that
the dynamo field is a superposition of transiently excited
eigenmodes whose coherence time and frequency are deter-
mined by the corresponding eigenvalue of the dynamo equa-
tion, as had been surmised by Hoyng �26	. For the theory to
make sense, all these eigenvalues should have negative real
parts. This property could be proven in the restricted case of
locally isotropic turbulence, but a general proof is still lack-
ing. The rms excitation level of the modes is given by an
equation that determines the cross correlations �aka��� up to
an overall constant. It follows that the relative excitation
level of the modes is determined by the statistics of the flow
and by linear theory. This is an example showing that linear
theory is not yet fully exhausted. Determination of the abso-
lute excitation levels requires explicit inclusion of nonlinear
effects in the theory. Unfortunately, this equation for �aka���
is rather complicated and cannot be solved in general. An
approximate expression for ��ak�2� / ��a0�2� exists when the
fundamental mode is dominant in magnitude, which may
hopefully apply in the case of numerical geodynamo models.

B. Applications

Application of this work is restricted to kinematically
stable dynamos, as defined in Sec. I, that are in a quasisteady
saturated state. Otherwise, there is no restriction, and nu-
merical models and laboratory dynamo experiments are
equally well eligible. Although current computer technology
does not yet permit construction of numerical solar dynamo
models with adequate resolution, such models do also
qualify once they become available �and turn out to be kine-
matically stable, which in view of their much higher mag-
netic Reynolds number could be a problem�. What is needed
is the possibility to measure the flow so that the dynamo
coefficients �ij and �ijk and thence the preferred basis may
be determined. The theory developed here may be extended
in several directions. One is the computation of the mean
reversal rate of numerical geodynamo models �see Sec.
VIII C�. Another would be the statistical distribution of the
expansion coefficients. We did not consider this topic here,
but it might be of interest as a theoretical underpinning of the
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giant Gaussian process approach to geomagnetic field mod-
eling �32,33	.

C. Mean reversal rate and phase memory

The geomagnetic dipole reverses its direction at random
moments, on average once every few 1�105 yr �31	, and
numerical geodynamo models exhibit a similar behavior. In
this paper we have argued that the imaginary part of �k is the
frequency and −1 /R�k is the coherence time of mode k. We
apply that to the fundamental mode, and identify the coher-
ence time of the fundamental dipole mode with the mean
time between reversals. So we anticipate that �0 is real �zero
frequency� and slightly negative �a relatively long coherence
time�. This leads to a simple method for computing the mean
reversal rate of a geodynamo model: determine the � and �
tensors �by measuring the flow� and compute �0.

Unfortunately, there is a snag. In units of the inverse dif-
fusion time � /R2, we will have 0�−�0�1, while for the
overtones −R�k�1. It will be difficult to determine the dy-
namo coefficients accurately enough to attain a precision in
the eigenvalues of a small fraction of � /R2, and this is nec-
essary since the mean reversal rate of the geodynamo is
�0.01� /R2. So this does not seem to be a practical way to
compute these quantities. However, if the fundamental mode
is dominant we may use Eq. �39� with k=�=0, to obtain

mean reversal rate = − �0 � M0000 �
�

R2

1

N
. �45�

Here we used Eq. �42� to estimate M0000��C00�rms
2 �c

��� /R2� /N. For the geodynamo Eq. �45� is of the right or-
der of magnitude, �8�10−14 s−1 or once per 4�105 yr,
taking for ��100��100 m2 s−1 and N�100 convection
cells. We mention in passing that the determination of the
mean reversal rate from data is complicated by issues such as
the time resolution of the data �34	.

A related application would be the solar dynamo, which
has a periodic fundamental mode, I�0��22 yr�−1, and ac-
cording to the theory developed here, −1 /R�0 would be the
coherence time of that mode, i.e., the time over which the
solar cycle remembers its phase. From observations we know
that the variability of the period P of the solar cycle
�	P�rms / P�R�0 /I�0�0.1 �35	. In principle it should now
be possible to compute this number from theory.

D. FOSA enigma

Although mean-field dynamo theory is not our main fo-
cus, we point out that we are now in a position to shed new
light on the problem of the first-order smoothing approxima-
tion �FOSA�. We illustrate the point for the solar dynamo,
but the argument most likely holds for any turbulent dynamo.
The FOSA enigma refers to the derivation of the dynamo
equation, where one is forced to make an unjustified approxi-
mation, the FOSA. But in spite of this the dynamo equation
produces very convincing results, such as a periodic solar
dynamo with migrating dynamo waves, a butterfly diagram,
etc. In short, mean-field theory seems to perform much better
than one may reasonably expect, and the question is why.

A fast road to mean-field theory is to interpret Eq. �17� as
the induction equation, i.e., we put x=B, A=��v�−��2

and F�t�=��u� �see Appendix B 1 or Ref. �26	�. The re-
sult is the dynamo Eq. �25�, and since F= ���u��rms
�urms /�c, the short correlation time requirement F�c�1
leads to urms�c /�c�1 �FOSA�, which is unlikely to be satis-
fied in actual dynamos.

One should be aware of the fact that the condition of a
short correlation time, F�c�1, is qualitative. It is not known
by how much F�c should be smaller than unity to avoid that
higher-than-second-order correlations become important, and
this may also differ from application to application. It is
possible that in the dynamo case F�c= furms�c /�c with a nu-
merical factor f that is actually much less than unity. This
could explain why the solutions of the dynamo equation be-
have as if F�c�1 even though urms�c /�c�1. Unfortunately,
it is not obvious how this idea may be verified.

The theory developed here does not consider an average
of B, but rather averages of expansion coefficients of B, and
that makes a big difference. This allows us to shed some
light on the FOSA issue from a different perspective. Short
correlation time condition �20� translated to the solar dy-
namo is now

Ck��c � urms�c�4
R2d

�c
3 �−1/2 1

�Rd/k
�

urms�c

�c

k
�4


��c

R
�3/2�c

d

� 1. �46�

For the number of convection cells we took 4
R2d /�c
3 with

d=thickness of the dynamo layer, and �Rd=spatial scale of
the fundamental mode, �Rd /k for overtone k. The remark-
able fact is that Eq. �46� is amply satisfied, while FOSA is
not �urms�c��c�. It follows that the results of the present
paper hold for the solar dynamo. The magnetic field consists
therefore of a superposition of transiently excited eigen-
modes of the dynamo Eq. �25� with �ij and �ijk given by Eq.
�B2� even though FOSA is violated. The FOSA problem
would be fully solved if we can show that the fundamental
mode has a dominant amplitude, that is, in the stationary
solution �aka��� of Eq. �34�, the largest element should be
��a0�2�. We have thus eased the FOSA problem by mapping it
onto another problem that seems more amenable to a quan-
titative treatment.

E. Outlook

We are currently in the process of testing the theory de-
veloped here with the help of a numerical geodynamo model.
The averages we have computed above depend only on a few
properties of the turbulent convection: the mean flow v and
the dynamo coefficients �ij and �ijk. These may be inferred
from sufficiently long measurements of the flow u�t�. This
allows computation of �ij and �ijk from their defining rela-
tion �B2�, and the eigenfunctions and eigenvalues of the dy-
namo equation. Once we know the basis functions, we may
obtain time series of Ck��t� and, finally, Mkm�n from Eq. �35�.
It seems unlikely, incidentally, that Mkm�n can be computed
with Eqs. �37� and �38� because there appears to be no clear
separation of scales in numerical models. At the same time
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the dynamo field B is to be measured and projected onto b̂k

�or rather the vector potential A is to be projected on ĵk as in
Eq. �11�	 to obtain the expansion coefficients ak�t� and their
statistical properties. These may then be compared with the
theoretical predictions. The usual practice in numerical dy-
namo models is that one observes and analyses interaction
between local structures. A noteworthy aspect of our ap-
proach is that the physics of the dynamo may now be ana-
lyzed in terms of interaction of global structures. It is hoped
that in doing so we gain new perspectives on the inner work-
ings of numerical dynamo models.
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APPENDIX A: THE FORM OF THE MODE EQUATIONS

Consider first an inner product in V and construct an ad-

joint set b̂i of b j so that these are biorthogonal in V:

�Vb̂i ·b jd3r=	ij. The equivalent of Eq. �5� is



V

b̂1 · b2d3r = 

V

ĵ1 · a2d3r − �
�V

b̂1 � a2 · d2� . �A1�

The surface term is in general nonzero, and is no longer
cancelled by a second surface term ��E. . .. Hence currents
and vector potentials no longer constitute a biorthogonal set
in V. However, we may still proceed and infer from Eqs. �10�
and �1� that

ȧk�t� = 

V

b̂k · Ḃd3r = 

V

b̂k · � � ��v + u� − �� � Bd3r ,

�A2�

which is Eq. �13�. We may get rid of �� operating on �¯
by integrating by parts which yields Eq. �12�, however at the
expense of the following surface term added to the right-
hand side

− �
�V

b̂k � ��v + u� − �� � B · d2� ,

which is in general nonzero, i.e., the boundary conditions do
not force it to be zero. The conclusion is that if we use an
inner product in V there is no way to infer Eq. �12�—we are
stuck with Eq. �13�.

Next consider an inner product in V+E, as defined in Eq.
�4�. This leads us to Eq. �10�, and we then hit the problem

that it is not clear how to proceed with �Eb̂k · Ḃd3r. The in-
duction equation does not hold in E, and there is no obvious
choice for V=v+u and � that one can make so that �

� �V−����B represents Ḃ in E. Again we would be stuck,
except that we now have the biorthogonal current-vector po-

tential mechanism �6� at our disposal. We integrate Eq. �9�
by parts and arrive at Eq. �11�. There is no longer any prob-
lem with surface terms. Finally we proceed from Eq. �11� to
Eq. �12� as outlined in the main text.

APPENDIX B: EXPLICIT FORM OF THE DYNAMO
OPERATOR D

There are two ways to arrive at Eqs. �22�–�25�. The fast
way is to bypass Eq. �19� and to derive Eqs. �25� and �24�
straightaway. We then insert expansion �3� in Eq. �25�, and
use the inner product defined by Eq. �6� to isolate Eqs. �22�
and �23�. This method has a disadvantage: it is subject to the
FOSA condition and has therefore a restricted applicability.
The second method is to start from Eq. �19� and to compute
the correlation function appearing in there, which leads us to
Eq. �22� and following equations. This method is more labo-
rious and also assumes a short correlation time. However,
since it uses expansion coefficients of B rather than B itself,
it turns out to have much wider range of validity. This valid-
ity issue is not considered here but in Secs. V and VIII D.

1. Computation via the dynamo equation

We interpret Eq. �17� as the induction equation, and iden-
tify x=B, A=��v�−��2 and F�t�=��u�. Application
of Eq. �18� leads to the dynamo Eq. �25� with

Db = ��v − ��� + 

0



d��ut � � � ut−��� � b = �v − ���

� b + 

0



d��ut � ��b · ��ut−� − �ut−� · ��b	� , �B1�

since � ·b=0, and we assume incompressibility, � ·u=0.
Time arguments appear momentarily as an upper index: ut

�u�r , t�. Relation �B1� is equivalent to Eq. �24� with

�ns = �npq

0



d��up
t ��suq

t−��� ,

and

�nqs = �nps

0



d��up
t uq

t−�� , �B2�

where up
t = pth vector component of u�r , t�. These are the

familiar � and � tensors from mean-field theory, in the
FOSA approximation, for incompressible convection, and
without assuming any flow symmetry. Note that �nqs=0
when n=s. Hence nine out of the 27 components of �nqs are
zero. This is no longer the case when resistive effects are
taken into account.

To make the connection with Eq. �22� insert expansion �3�
in Eq. �25�: �t�ai�bi= �a��� �Db� �summation over i and ��.
Uncurling to �t�ai�ai= �a��Db�+��, left multiplication with

ĵk and use of the inner product of Eq. �6� produces Eqs. �22�
and �23�.

2. Computation from Eq. (19)

The disadvantage of the above argument is that the re-
quirement of a short correlation time F�c�1 leads to the
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restriction urms�c /�c�1 �FOSA�, while there are, unfortu-
nately, several indications that urms�c /�c�1. We can do bet-
ter if we start from Eq. �19� and compute the correlation
function. The result is the same, but the range of validity is
much wider �see Secs. V and VIII D�.

To evaluate the correlation function in Eq. �19� it is useful
to set up a formal approach, which is really an overkill here,
but not in Appendix B 3 as we deal with resistive effects. We
consider operators in vector space with a left and a right
vector gate, for example C=u� and a ·C ·b=a ·u�b. Since
�C ·b�i= �u�b�i=�iskusbk and �C ·b�i=Cikbk we have Cik
=�iskus. But C has also a representation in function space,

denoted with upper indices. This is Cik�t�=�Vĵi ·u�bkd3r,
defined in Eq. �16�. While Cik is an � array of functions
of time, Cik is a 3�3 array of functions of r and t.

For the computation of the infinite internal summation
over i in Eq. �19�, we consider a slightly more general ques-
tion: given two operators Pk� and Qk� in function space rep-
resentation, compute �PQ�ik= Pi�Q�k �summation over ��.
Here the closure of relation �8� figures as the essential tool

�PQ�ik = 

V

ĵi · P · b�d3r

V

ĵ� · Q · bkd3r

=
 

V

d1d2ĵn1
i Pnm1bm1

� ĵp2
� Qpr2br2

k

= 

V

d3rĵn
i Pnm�pms�sQprbr

k

= 

V

d3rĵn
i Pnm�� � Q · bk�m

= 

V

d3rĵi · �P · � � Q� · bk. �B3�

Notation: ĵn1
i =nth vector component of ĵi�r1�, etc. In the sec-

ond line we insert the closure relation ĵp2
� bm1

� =�pms	�1
−2��s2, after which the volume integral over 2�r2 may be
done with the help of the delta function. In the third line �s
operates on Qpr and br

k as these had originally the argument
r2. We see that �� appears at the location of the sum over �.
Relation �B3� tells us that the sum over � in the top line is
equal to a volume integral of an ordinary vector expression.
It may be generalized to several internal summations, e.g.,

�PQT�ik = 

V

d3rĵi · P · � � Q · � � T · bk, �B4�

where each � operates on everything to its right.
The summation over i in Eq. �19� is now almost trivial.

With the help of Eq. �B3� and Ct=ut� we find that

Cki�t�Ci��t − �� = 

V

d3rĵk · C�t� · � � C�t − �� · b�

= 

V

d3rĵk · ut � � � ut−� � b�. �B5�

Now take �0
d�� � of Eq. �B5�, combine that with Sk� from

Eq. �15�, and we have proven that the operator between � in

Eq. �19� is equal to Dk�=�Vd3rĵk ·D ·b� with D given by Eq.
�B1�.

3. Resistive effects

So far we have ignored the exponential operators
exp��A�� in Eqs. �18� and �19� which is tantamount to ig-
noring all mean flow and resistive effects on the � and �
tensors. Here we investigate the influence of resistivity, with
the help of the operator technique introduced above. Instead
of Eq. �19� our starting point is now

d

dt
�ak� = �Sk� + 


0



d��Ckm�t��exp�S��	mnCnp�t − ��

��exp�− S��	p����a�� , �B6�

with Sk� and Cmn�t� given by Eqs. �15� and �16�. There are
three internal summations in Eq. �B6�, over m, n, and p, but
as we shall see the exponential operators contain additional
summations. As a first step we compute

�P exp�S��Q	ik = �P�1 + • S� + 1
2 • S • S�2 + ¯� • Q	ik

= 

V

d3rĵi · P · exp�� � S�� · � � Q · bk.

�B7�

In the first and second line P, Q and S are � arrays with
numbers as entries, and a bullet • indicates an internal sum-
mation over a double upper index. To arrive at the last line
we apply relation �B4�. As explained in Appendix B 2, ��
appears at the location of each internal summation; P, Q, and
S are vector operators, e.g., S= �v−����, and a center dot
indicates an internal summation over a double lower �vector�
index, i.e., the usual vector product. Since relation �B7� is
easily generalized, we are now in a position to compute



0



d���C�t�exp�S��C�t − ���exp�− S��	k�

= 

0



d�

V

d3rĵk · �Ct · e��S� · � � Ct−��e−��S� · b�

= 

V

d3rĵk · �

0



d��ut � e���2
· � � ut−�� � e−���2� · b�.

�B8�

The time argument appears again as an upper index; at the
second=sign �1� the integration order is reversed, �2� we use
C=u�, and �3� we stipulate zero mean flow so that ��S
=−�� ��� =��2, since ��S operates exclusively on
vectors having zero divergence. Next, we combine Eq. �B8�
with Sk� from Eq. �15� to see that Eq. �B6� is equivalent to
Eqs. �22� and �23� with
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D = �v − ��� + 

0



d��ut � e���2
· � � ut−�� � e−���2

.

�B9�

The difference with Eq. �B1� is in the exponential operators
exp�����2� that embody the effect of a finite resistivity on
the � and � tensors. They are evolution operators:
exp����2�b�B�r ,��, where B�r , t� is the solution of �tB
=��2B with initial condition B�r ,0�=b�r�. This is usually
written in terms of the more familiar Green’s function for-
malism �9	. The operator technique has the advantage of be-
ing very compact. Explicit expressions for the � and � ten-
sors may be extracted from Eq. �B9� with the help of a
spatial Fourier transformation of the flow u. For this and
related matters we refer to �26	.

APPENDIX C: PROOF OF R�k�0

We close with a proof that the eigenvalues of the dynamo
equation of a statistically steady dynamo with locally isotro-
pic small-scale turbulence all have negative real parts. We
begin with Eq. �34�, take k=� and put �t�aka���=0 on ac-
count of statistical steadiness,

R�k��ak�2� = − 1
2 �Mkmkn + Mknkm���aman�� . �C1�

�summation over m and n, not over k�. It is essential that we
restrict attention to kinematically stable dynamos. In that
case the induction equation �on which our results are based�
will generate the quasisteady saturated field of the dynamo,
and �aka��� will actually be constant.

Small-scale turbulence allows us to invoke Eq. �37�, and
locally isotropic convection is understood to imply that the
tensor �pq is diagonal,

�pq�r� = ��c
3	pq, �C2�

with

��c
3 =

1

3



V

d3�

0



d��u�r,t� · u�r + �,t − ��� . �C3�

The expression on the right is written as ��c
3 because it has

the dimension of a turbulent diffusion coefficient times a
correlation volume. We use ��c

3 as a generic symbol defined
by Eq. �C3�. It may be a function of position. In this approxi-
mation we have

Mkmkn = 

V

d3r��c
3�ĵk � bm� · �ĵk � bn��. �C4�

Since we now also have that Mknkm�=Mkmkn, it follows that

R�k��ak�2� = − 

V

d3r��c
3�ĵk � bm� · �ĵk � bn�� · �aman��

= − 

V

d3r��c
3��ĵk � B�2� . �C5�

In the last line the summation over m and n has been
performed with the help of relation �3�. It follows that
R�k�0, provided ��c

3 is positive. This will be the case for
almost all turbulent flows u�r , t�. We stress that the proof
allows for a finite resistivity. We have tried to extend the
proof to more general dynamos, and while we have not been
unsuccessful yet, we are confident that such an extension
should be possible.

The physics behind the above proof is not some kind of
stability analysis, but rather ordinary phase mixing, cf.
Sec. V C. The field of the dynamo may be represented as a
sum of oscillators, B=�ia

ibi. The mode amplitudes ai

=Ai cos��it+�i� have a variable magnitude Ai and a ran-
domly drifting phase �i. The average over an ensemble of
dynamos �B�=�i�Ai cos��it+�i��bi will be zero. It follows
that the mean field �B� over an ensemble of statistically
steady dynamos is zero, as in Eq. �31�. This in turn implies
R�k�0. Another pertinent remark in this connection is that
there are several examples of randomly perturbed or driven
oscillators whose mean amplitude is zero if the mean energy
is constant �15,26	.
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